3.4.48 \(\int \frac {x^4}{(a+b x^3)^3} \, dx\) [348]

3.4.48.1 Optimal result
3.4.48.2 Mathematica [A] (verified)
3.4.48.3 Rubi [A] (verified)
3.4.48.4 Maple [C] (verified)
3.4.48.5 Fricas [A] (verification not implemented)
3.4.48.6 Sympy [A] (verification not implemented)
3.4.48.7 Maxima [A] (verification not implemented)
3.4.48.8 Giac [A] (verification not implemented)
3.4.48.9 Mupad [B] (verification not implemented)

3.4.48.1 Optimal result

Integrand size = 13, antiderivative size = 158 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=-\frac {x^2}{6 b \left (a+b x^3\right )^2}+\frac {x^2}{9 a b \left (a+b x^3\right )}-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{9 \sqrt {3} a^{4/3} b^{5/3}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{27 a^{4/3} b^{5/3}}+\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{54 a^{4/3} b^{5/3}} \]

output
-1/6*x^2/b/(b*x^3+a)^2+1/9*x^2/a/b/(b*x^3+a)-1/27*ln(a^(1/3)+b^(1/3)*x)/a^ 
(4/3)/b^(5/3)+1/54*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(4/3)/b^(5/ 
3)-1/27*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(4/3)/b^(5/3)* 
3^(1/2)
 
3.4.48.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.89 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=\frac {-\frac {9 b^{2/3} x^2}{\left (a+b x^3\right )^2}+\frac {6 b^{2/3} x^2}{a^2+a b x^3}-\frac {2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{4/3}}-\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{4/3}}+\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{4/3}}}{54 b^{5/3}} \]

input
Integrate[x^4/(a + b*x^3)^3,x]
 
output
((-9*b^(2/3)*x^2)/(a + b*x^3)^2 + (6*b^(2/3)*x^2)/(a^2 + a*b*x^3) - (2*Sqr 
t[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(4/3) - (2*Log[a^(1/3) 
 + b^(1/3)*x])/a^(4/3) + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/a^ 
(4/3))/(54*b^(5/3))
 
3.4.48.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.769, Rules used = {817, 819, 821, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {\int \frac {x}{\left (b x^3+a\right )^2}dx}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {\frac {\int \frac {x}{b x^3+a}dx}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}}{3 b}-\frac {x^2}{6 b \left (a+b x^3\right )^2}\)

input
Int[x^4/(a + b*x^3)^3,x]
 
output
-1/6*x^2/(b*(a + b*x^3)^2) + (x^2/(3*a*(a + b*x^3)) + (-1/3*Log[a^(1/3) + 
b^(1/3)*x]/(a^(1/3)*b^(2/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/ 
3))/Sqrt[3]])/b^(1/3)) + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2 
*b^(1/3)))/(3*a^(1/3)*b^(1/3)))/(3*a))/(3*b)
 

3.4.48.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.4.48.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.75 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.37

method result size
risch \(\frac {\frac {x^{5}}{9 a}-\frac {x^{2}}{18 b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}}}{27 b^{2} a}\) \(58\)
default \(\frac {\frac {x^{5}}{9 a}-\frac {x^{2}}{18 b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {-\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}}{9 b a}\) \(127\)

input
int(x^4/(b*x^3+a)^3,x,method=_RETURNVERBOSE)
 
output
(1/9/a*x^5-1/18*x^2/b)/(b*x^3+a)^2+1/27/b^2/a*sum(1/_R*ln(x-_R),_R=RootOf( 
_Z^3*b+a))
 
3.4.48.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 512, normalized size of antiderivative = 3.24 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=\left [\frac {6 \, a b^{3} x^{5} - 3 \, a^{2} b^{2} x^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} x^{3} - a b + 3 \, \sqrt {\frac {1}{3}} {\left (a b x + 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} x^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac {2}{3}} x}{b x^{3} + a}\right ) + {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} b x + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b x - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{54 \, {\left (a^{2} b^{5} x^{6} + 2 \, a^{3} b^{4} x^{3} + a^{4} b^{3}\right )}}, \frac {6 \, a b^{3} x^{5} - 3 \, a^{2} b^{2} x^{2} + 6 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, b x + \left (-a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}}}{b}\right ) + {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} b x + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, {\left (b^{2} x^{6} + 2 \, a b x^{3} + a^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b x - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{54 \, {\left (a^{2} b^{5} x^{6} + 2 \, a^{3} b^{4} x^{3} + a^{4} b^{3}\right )}}\right ] \]

input
integrate(x^4/(b*x^3+a)^3,x, algorithm="fricas")
 
output
[1/54*(6*a*b^3*x^5 - 3*a^2*b^2*x^2 + 3*sqrt(1/3)*(a*b^3*x^6 + 2*a^2*b^2*x^ 
3 + a^3*b)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*x^3 - a*b + 3*sqrt(1/3)*(a*b* 
x + 2*(-a*b^2)^(2/3)*x^2 + (-a*b^2)^(1/3)*a)*sqrt((-a*b^2)^(1/3)/a) - 3*(- 
a*b^2)^(2/3)*x)/(b*x^3 + a)) + (b^2*x^6 + 2*a*b*x^3 + a^2)*(-a*b^2)^(2/3)* 
log(b^2*x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) - 2*(b^2*x^6 + 2*a*b*x^ 
3 + a^2)*(-a*b^2)^(2/3)*log(b*x - (-a*b^2)^(1/3)))/(a^2*b^5*x^6 + 2*a^3*b^ 
4*x^3 + a^4*b^3), 1/54*(6*a*b^3*x^5 - 3*a^2*b^2*x^2 + 6*sqrt(1/3)*(a*b^3*x 
^6 + 2*a^2*b^2*x^3 + a^3*b)*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b* 
x + (-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) + (b^2*x^6 + 2*a*b*x^3 + a^ 
2)*(-a*b^2)^(2/3)*log(b^2*x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) - 2*( 
b^2*x^6 + 2*a*b*x^3 + a^2)*(-a*b^2)^(2/3)*log(b*x - (-a*b^2)^(1/3)))/(a^2* 
b^5*x^6 + 2*a^3*b^4*x^3 + a^4*b^3)]
 
3.4.48.6 Sympy [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.44 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=\frac {- a x^{2} + 2 b x^{5}}{18 a^{3} b + 36 a^{2} b^{2} x^{3} + 18 a b^{3} x^{6}} + \operatorname {RootSum} {\left (19683 t^{3} a^{4} b^{5} + 1, \left ( t \mapsto t \log {\left (729 t^{2} a^{3} b^{3} + x \right )} \right )\right )} \]

input
integrate(x**4/(b*x**3+a)**3,x)
 
output
(-a*x**2 + 2*b*x**5)/(18*a**3*b + 36*a**2*b**2*x**3 + 18*a*b**3*x**6) + Ro 
otSum(19683*_t**3*a**4*b**5 + 1, Lambda(_t, _t*log(729*_t**2*a**3*b**3 + x 
)))
 
3.4.48.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.94 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=\frac {2 \, b x^{5} - a x^{2}}{18 \, {\left (a b^{3} x^{6} + 2 \, a^{2} b^{2} x^{3} + a^{3} b\right )}} + \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{27 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} \]

input
integrate(x^4/(b*x^3+a)^3,x, algorithm="maxima")
 
output
1/18*(2*b*x^5 - a*x^2)/(a*b^3*x^6 + 2*a^2*b^2*x^3 + a^3*b) + 1/27*sqrt(3)* 
arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*b^2*(a/b)^(1/3)) + 
1/54*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a*b^2*(a/b)^(1/3)) - 1/27*log 
(x + (a/b)^(1/3))/(a*b^2*(a/b)^(1/3))
 
3.4.48.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.92 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=-\frac {\left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{27 \, a^{2} b} - \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a^{2} b^{3}} + \frac {2 \, b x^{5} - a x^{2}}{18 \, {\left (b x^{3} + a\right )}^{2} a b} + \frac {\left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, a^{2} b^{3}} \]

input
integrate(x^4/(b*x^3+a)^3,x, algorithm="giac")
 
output
-1/27*(-a/b)^(2/3)*log(abs(x - (-a/b)^(1/3)))/(a^2*b) - 1/27*sqrt(3)*(-a*b 
^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^2*b^3) 
+ 1/18*(2*b*x^5 - a*x^2)/((b*x^3 + a)^2*a*b) + 1/54*(-a*b^2)^(2/3)*log(x^2 
 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b^3)
 
3.4.48.9 Mupad [B] (verification not implemented)

Time = 5.73 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.06 \[ \int \frac {x^4}{\left (a+b x^3\right )^3} \, dx=\frac {\frac {x^5}{9\,a}-\frac {x^2}{18\,b}}{a^2+2\,a\,b\,x^3+b^2\,x^6}+\frac {\ln \left (\frac {1}{81\,a^{5/3}\,{\left (-b\right )}^{4/3}}+\frac {x}{81\,a^2\,b}\right )}{27\,a^{4/3}\,{\left (-b\right )}^{5/3}}+\frac {\ln \left (\frac {x}{81\,a^2\,b}+\frac {{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{324\,a^{5/3}\,{\left (-b\right )}^{4/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{54\,a^{4/3}\,{\left (-b\right )}^{5/3}}-\frac {\ln \left (\frac {x}{81\,a^2\,b}+\frac {{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{324\,a^{5/3}\,{\left (-b\right )}^{4/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{54\,a^{4/3}\,{\left (-b\right )}^{5/3}} \]

input
int(x^4/(a + b*x^3)^3,x)
 
output
(x^5/(9*a) - x^2/(18*b))/(a^2 + b^2*x^6 + 2*a*b*x^3) + log(1/(81*a^(5/3)*( 
-b)^(4/3)) + x/(81*a^2*b))/(27*a^(4/3)*(-b)^(5/3)) + (log(x/(81*a^2*b) + ( 
3^(1/2)*1i - 1)^2/(324*a^(5/3)*(-b)^(4/3)))*(3^(1/2)*1i - 1))/(54*a^(4/3)* 
(-b)^(5/3)) - (log(x/(81*a^2*b) + (3^(1/2)*1i + 1)^2/(324*a^(5/3)*(-b)^(4/ 
3)))*(3^(1/2)*1i + 1))/(54*a^(4/3)*(-b)^(5/3))